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The temperature-relaxation functions of the stress, internal energy, and heat flux 
required in estimating the thermal stress in metals, in conditions of intense 
pulsed heating for arbitrary and small time intervals, are found. 

Processes occurring in the fast action of intense heat fluxes on solid media are accom- 
panied by thermal and thermomechanical relaxational phenomena, which must be taken into ac- 
count in estimating the stress. In [i, 2], the solution was obtained for viscoelastic media 
with thermal memory, when relaxation is due solely to thermal perturbation. The given de- 
pendences of the stress and temperature fields on the function (core) of the relaxing param- 
eters of the medium in the estimates may be used with known cores. The explicit form of the 
function is also required for the analysis of features of the solutions obtained in [2]. :~ 
Methods of nonequilibrium thermodynamics were used in [3,4] toobtain the constraints im- 
posed on the functions used in the calculations, the explicit form of which may be established 
using physical and physiocomechanical models of the behavior of the given media. 

Arbi t rarY~.Time,Igtervals  .. 

For metallic polycrystals, the model of a linear body of [5] with relaxation cores R exp 
(--z + S/Zr),is applicable. Experiment indicates that the exponential includes a certain 
function depending on the form of reaction of the medium to an external perturbation varying 
in the interval [0, i]. In the absence of relaxation, this factor is zero, and for the model 
[5] it is unity. It is usually determined empirically, and divergence of the factor from unity 
may be explained by the approximate nature of the model of the relaxation processes. 

The relaxing terms of the system of equations in [I, 2] may be written in the form 

i i ) ~(s)F(~--s)ds=R exp(A ~ - s  F(T--s)ds, (1) 

O 0 

where s~T; 0 ~ T ~T,; ~, § ~; F(T -- s) is some function of the temperature, and ~(~--s) 
is the relaxation core, which may be explicitly expressed when R and T r (the spectra of re- 
laxing parameters and relaxation times, respectively) are known and is determined by the prop- 
erties of the medium and the perturbation source, and therefore Eq. (i) must be written in the 
form 

0 0 n 

(2) 

In [6], the heat flux in the medium is described as follows in a linear approximation 

T 

q* = - .f = - s) ti ,  ( ,  - s) ( 3 )  
0 

when s ~T, 0 ~ �9 ~ T,, T, ~ ~. In Eq. 
Next Eq. (3) is written in the form 

(3), a(T -- s) is the relaxation core of the flow. 
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�9 - -  s~ t,+(T--s)ds, q + ' = - - R q S E e x p  ( -  q~ Tq. ] (4) 
0 n 

where 0 ~aqn ~i. In Eq. (4), Rq must be determined. 

The next step is to establish the relation between the fluxes, stresses, and internal 
energies for nonrelaxing and relaxing media at times x~O (no relaxation) and 0~T~Zrn, 
x > Zrn (relaxation observed). From all the Zrn, the largest z r is chosen. The balance equa- 
tion is written in the form 

f =: N_ Af = :N (t- fS, (5) 

where f, fR, fN are the heat flux, stress, or internal energy at times 0~z ~Zrnmax, T > 
Zrnma x (with relaxation) and T~0 when there is no relaxation. 

According to Eq. (5), qi is given by the following expressions at times z~0 and z > 

Tqn 
qN= ~Nl,i, R - -~ t , ,  

- -  q~ = " ( 6 )  

It follows from Eqs. (4)-(6) that 

6N+ ~R)t,~ 
Rq ~ 

~ +_ ,., ,+_.,+ 
qn Tqn ] 

(7) 

and a(z -- s) is determined from the relation 

= ( ~  - s )  = 

" t : - -S  <;" + t,, 2 .xp  (-  +,,,,--I 
n \ '~qn / 

"~ "t: - -  S + ++ox, 
, (8) 

where A N ffi X R when x ffi 0. 

In [i], the stress fn the direction z is 

x~_ q- u (x - -  s) t (~ - -  s) ds = (2x~ + x4) u, - -  g~l + Ro 
0 0 

E . g _ _ S  exp [ -- %. ~ t (+ -- s)ds 
, \ %, ] (9) 

' is the derivative of the displacement with respect when s ~T, 0 ~z ~z,, x, § =, where u z 
to z. If stress relaxatlon as a result of shear is not present, Eqs. (5) and (9) give 

= " "u" N ~ . . = ( 2 x 3 + x + ) . . _ ~ ,  (10)  o N (2x3 +x4) ~--x~'t, " " " t 

where xN = aSEo(1 -- v) -x. It follows from Eqs. (5), (9), and (10) that 

N R . (x2 + ~ -- 2x~) t 

S exp -- %n o % ,  t(x--s)ds (11) 

where 0~aon~l , and the core y(z -- s) is determined from the relatlon 

(~+ R . 

. \ "r2on / �9 
V ( + - -  s)  = - -  + 

2 bf ~ exp ( - -%~x--  s) (12) 
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In [6], the internal energy in the linear approximation is determined by the dependence 

E = b § c~t § ] p (~ - -  s) t (~ - -  s) ds  ( 1 3 )  
0 

for s~, 0~ ~,, ~, ~ ~ where b is a constant. In Eq. (13), no account is taken of the 
component due to thermal expansion, which is given by the following expression in the elastic 
case, according to [7] 

~ c u ~ l u t  = =oEo (1 - -  2 v ) - ' l t  = ~,lt, ( 1 4 )  

where ~ = 80 t is the dilatation. Taking account of Eq. (14), the internal energy is written 
in the form 

jx E = b + c~t + z~Pot z + R.  exp - -  = . .  t (~ - -  s) ds. 
Ten 

0 n 

(15) 

For the unrelaxed and relaxed internal energy, Eqs. (5) and (15) give 

E~= b + ~# + ,,.~ot~, # = b + ~Rt + ~ot '~, (16) 

where relaxation in a0 and 80 is neglected. In Eq. (16), Cv N = ~vo is the specific heat at 
0 = to. From Eqs. (5), (15), and (16), the following expression is obtained for R e 

c~ -- 2c~ ) t + Re = (oN§ R .w (x~N-} -- J - -  2 ~ )  (~ot, ,, 

and according t o  Eqs. (15) and (17) 

( ~ -  s) = ( c ~ +  P" " 

T r e  7 !~exp(--cx,.'~%is)t('~--s)as (18) 

where 0~aen~l. 

Small Time Intervals 

The relaxation function is found at times T < Zrnmln/Arn, when only the first two terms 
need be retained in the series expansion of the exponential and Trnml n is the smallest Trn. 

The core ~(~--s) in Eq. (2) may be written in the form of a series 

-- = , (19) 
n Trn  Trn  

where ~(~) and ~' (z)are determined from Eq. (2) under the following conditions 

0 n 

.g 

0 

(20) 

where ~N, A~n are, respectively, the total unrelaxed parameter and the n-th order in relaxa- 
tion, while ~n(T) and ~(T) are the coefficients of the zero and first approximation in the 
expansion of the exponentials. From Eq. (20) 

(21) 
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where N is the number of relaxing parameters. 
(4), (9), (15), and (21) for the heat flux, stress, and internal energy 

The following results are obtained from Eqs. 

q~ = ~N (Nx)-i __ 2 Ak .a~ .  t,, (~ - -  s) ds, 
~ T q n  

0 n 

0 n 
T 

0 n 

(22) 

(23)  

(24) 

Suppose the only grain-boundary relaxation of the heat flux and relaxation in the elastic 
modulus are perceptible. Then it follows from Eqs. (22)-(24) that 

T 

0 

fizz 

T 

= (2~3 + x4) u~ - -  g ~ _ ~ _  EoO~zo ~ - -  s t ( ~ - -  sl ds, 
c U + Eo~z~O z'% 

0 

E = b + + ( I - -  2v) "~ (e,, + EoOo~o) "~ o 
0 

where the relaxation functions at small times are approximate expressions 

(25) 

(26) 

(27) 

__2 ( 'O - - ,  = ( ~ - - s ) _ _  Xs~-~-- 3 a (28) 
T'~q 

E~Oc~ ~ - - s  (29)  
u 2 1 5  c v + E o ~ O  ~ ' 

ao~oEoO s ~ z ~o~oEoO T - - s  (30) 
~(x--s)~cvx-i+ (1--2v)x co+EoOg~ xx, 

I n  Eqs.  ( 2 5 ) - ( 3 0 ) ,  rq  = r e  = x e = d a / a .  I n  Eq. ( 2 5 ) ,  t h e  d i m e n s i o n a l  d e f e c t  o f  t h e  t h e r m a l  
conductivity 

is a consequence of the Wiedemann--Franz law k = (~a/3)(k/e)28~-~ and the dependence of the 
electricalconductivity of the polycrystal on the hydrostatic pressure according to [8]: 
A~/~ -----(K/Ao) 2 . 

In [5], the dimensionless defect of the elastic modulus AE, associated with temperature 
relaxation, was given in the form 

E N E R 

Cv 

where E R ffi ~Ra and E N = Eo, and hence the dimensional defect of the elastic modulus used in 
Eqs. (26) and (27) is 

AE = E N ~  E R = Ags = EoO 
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In Eqs. (25)-(30), according to the conditions, N = i and it is assumed that Uqn = Son = 
Uen = I. The relations obtained for the heat flux, stress, internal energy, and relaxing 
cores allow the thermal stress arising in metals under thermal impact to be estimated if the 
properties of the relaxing parameters are known. Since the stress plays a significant role 
only in a very thin surface layer, Eqs. (28)-(30) may be used in the estimates, satisfying 
the conditions of small time intervals. 

NOTATION 

O, to, current and equilibrium temperature, ~ t,i = (0 -- to),i, temperature gradient 
in the direction i; qi, heat flux density~ E, internal energy densityl OZZ, normal stress in 
the direction z; I, thermal conductivity; Cv, specific heat; a, thermal diffusivity; ~, elec- 
trical resistivity; K, modulus of omnidirectional compression; Eo, Young's modulus; uS, ~8, 
coefficients of linear and volume thermal expansion; ~, Poisson's ratio; o, characteristic 
grain-boundary stress; e, electron charge; k, Boltzmann constant; A, constant of the medium; 
d, linear grain dimension; Uz, displacement in the direction z;_7, u, B, temperature-relaxa- 
tion cores of the stress, heat flux, and internal energy; fN, fK, nonrelaxed and relaxed char- 
acteristics of the medium; fM, momentary value of the characteristics of the medium; T, s, time; 
Tqn, Ten, Ton, relaxation times of heat flux, internal energy, and stress determined by the 
n parameter; ~i (i = 2, 3, 4), physicomechanical characteristics of the medium. Indices: 
N, nonrelaxed; R, relaxed. 
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